idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.05.2012 10:21

Graphen: Perfekt in Unordnung

Gunnar Bartsch Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Graphen ist ein Material aus reinem Kohlenstoff, das für technische Anwendungen interessant ist. Noch mehr Potenzial dürfte es bieten, wenn man seine regelmäßige Struktur gezielt verändert. Auf diesem Gebiet haben Würzburger Chemiker einen Fortschritt erzielt.

    Im Prinzip ist Graphen nichts anderes als eine extrem dünne Folie, die aus einer einzigen Schicht von Kohlenstoffatomen besteht. Die Atome sind darin so angeordnet, dass sie ein Gitter mit einer sechseckigen, bienenwabenförmigen Struktur bilden. Lange wurde eine solche Struktur für instabil gehalten – bis sie dann im Jahr 2004 von Konstantin Novoselov und Andre Geim doch realisiert wurde. Dafür bekamen die beiden russischen Physiker 2010 den Nobelpreis verliehen.

    Graphen zeichnet sich durch ungewöhnliche Eigenschaften aus: Es leitet Wärme und Strom besser als jedes andere Material; seine Zugfestigkeit ist rund 125-mal höher als die von Stahl. Zudem weist es eine geringe Reaktivität gegenüber typischen Reagenzien auf, es ist also chemisch sehr stabil. Dadurch wird Graphen interessant für die Grundlagenforschung und für Anwendungen. Unter anderem kann es Mikrochips leistungsfähiger machen; in Form von Graphen-Oxid eignet es sich zum Beispiel als Versiegelungsmaterial.

    Defekte bringen neue Eigenschaften

    Die Eigenschaften des Graphens ändern sich, wenn die Struktur des Moleküls Defekte aufweist. Solche Defekte treten bei der Herstellung von Graphen häufig auf: Die streng geordnete wabenförmige Sechseck-Struktur ist dann durch eingestreute Fünf- oder Siebenecke gestört, das ansonsten flache Graphen beult sich an diesen Stellen aus. „Wenn solche Defekte gezielt in die Struktur eingebracht werden können, erlangt man weitreichende Kontrolle über die optischen und elektromagnetischen Eigenschaften des Kohlenstoffmaterials“, sagt Professorin Anke Krüger vom Institut für Organische Chemie der Universität Würzburg.

    Wie genau verändern solche Störstellen zum Beispiel die elektronischen und magnetischen Eigenschaften von Graphen? Für diese Frage interessiert sich Anke Krügers Forschungsgruppe. Um die Störstellen bestmöglich analysieren zu können, versuchen die Chemiker, sie passgenau zu synthetisieren – dabei sind sie umso zufriedener, je perfekter die geschaffene Unordnung ausfällt. Auf diesem Gebiet ist dem Würzburger Team jetzt ein Fortschritt gelungen, den es im Fachblatt „Chemical Communications“ beschreibt.

    Störstelle im Labor synthetisiert

    Anke Krüger und ihre Doktorandin Yvonne Kirchwehm haben Kohlenstoffatome zu drei miteinander verbundenen Fünf-Ringen verknüpft, an denen jeweils ein Sechs-Ring aus Kohlenstoffatomen hängt. Diese Struktur bezeichnen die Chemiker als Tribenzotriquinacen. Um diese Kern-Einheit in größere Graphenmodelle „einbauen“ zu können, muss sie an sehr schwer zugänglichen Positionen gezielt modifiziert werden. Diese äußerst knifflige Aufgabe haben die Würzburger Chemikerinnen nun durch eine geschickte Auswahl der Startmoleküle gelöst.

    „Damit ist der Weg zu deutlich größeren und dem Graphen immer ähnlicheren Molekülen mit einer definierten Defektstruktur geebnet“, erklärt Yvonne Kirchwehm. Derartige Moleküle will die Arbeitsgruppe der Würzburger Chemieprofessorin als nächstes untersuchen – mit dem Ziel, den Auswirkungen von Krümmungsdefekten im Graphen und ihrem Anwendungspotential auf die Spur zu kommen.

    Das Forschungsgebiet von Anke Krüger

    Anke Krüger erforscht seit mehr als zehn Jahren neuartige Materialien aus Kohlenstoff. „Wir stellen diese Materialien her, charakterisieren ihre Eigenschaften und arbeiten an der kontrollierten Modifizierung ihrer Oberflächen, um neuartige Eigenschaften zu erzeugen“, sagt sie. Zu ihren Forschungsobjekten gehören neben Graphenmodellen auch so genannte Nanodiamanten und Kohlenstoff-Zwiebeln – letztere bestehen aus ineinander verschachtelten Fullerenen, das sind fußballförmige Molekülen aus Kohlenstoff.

    “Ortho-methylated tribenzotriquinacenes – paving the way to curved carbon networks”, Yvonne Kirchwehm, Alexander Damme, Thomas Kupfer, Holger Braunschweig and Anke Krueger, Chemical Communications, 2012, 48, 1502-1504, DOI: 10.1039/C1CC14703J

    Kontakt
    Prof. Dr. Anke Krüger, Institut für Organische Chemie der Universität Würzburg,
    T (0931) 31-85334, krueger@chemie.uni-wuerzburg.de


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).